APPLICATION DE LA RMN DU ¹³C A L'ETUDE DES OLIGO ET POLYSACCHARIDES. CONFIGURATION ANOMERIQUE.

F.R. TARAVEL et Ph.J.A. VOTTERO

Centre de Recherche sur les Macromolécules Végétales. B.P. 53 - 38041 GRENOBLE/Cédex - France.

(Received in France 7 March 1975; received in UK for publication 27 May 1975)

Au cours d'un travail effectué dans la série du dihydro-2,5 diméthoxy-2,5 furanne et de son homologue saturé (1) nous avions pu mettre en évidence une différence très sensible entre les couplages $J^{13}C(2)H(2)$ de l'isomère cis et de l'isomère trans grâce à l'observation des satellites protoniques du carbone 13. Le même résultat avait été enregistré pour les anomères α et β du $\underline{\mathbb{D}}$ -glucopyranoside de méthyle. Malheureusement les satellites sont souvent masqués par les massifs protoniques du spectre $\frac{12}{12}$ C et les conclusions, rendues hasardeuses, n'avaient pu être développées et exploitées.

Avec l'apparition des spectromètres permettant d'obtenir les spectres de résonance du ¹³C et la commercialisation de la technique dite du "gated decoupling" nous avons repris l'étude systématique du J¹³CH en position anomère. Nous nous sommes plus particulièrement intéressés à la série furannique en ce qui concerne les monomères et à l'exploitation de cette méthode pour la caractérisation des types deliaison glycosidique dans les oligo et polysaccharides.

Le tableau 1 montre la différence entre les J¹³C(1)H(1) des deux anomères du tri-0-acétyl-2,3 5 <u>p</u>-xylofuranoside de méthyle et rappelle les résultats acquis pour les dihydro-2,5 diméthoxy-2,5 furannes cis et trans.

TABLEAU 1 : $J^{13}C(1)H(1)$ en HZ

AcO O HOCH ₃	α	176,25		α (trans)	176,0
OAc	β	172,50		β (cis)	172,5

L'accord trouvé entre ces deux séries pour un cycle dont la mobilité est bien connue, montre que le J^{13} CH semble dépendre essentiellement de paramètres très locaux. Il faut noter aussi l'absence d'influence des positions 2 et 3, vinyliques dans un cas, diols substitués dans l'autre. La comparaison de ces deux séries est donc très favorable à la possibilité de caractérisation des formes α et β d'un glucide, ou d'une liaison glycosidique par l'intermédiaire du J^{13} CH. En série pyrannique, nous avons réalisé les spectres de RMN J^{13} C du triacétate de cellulose (TAC) et du triacétate d'amylose (TAA). Ces spectres montrent que les deux types de liaison glycosidique β et α sont parfaitement reconnaissables par l'intermédiaire des couplages J^{13} C(1)H(1) (fig. 1 et tableau 2).

					13						
TABLEAU 2 :	Paramètres	spectraux	de	RMN	-°C	des	échantillons	de	TAC	et	TAA.

	TAC	TAA
δ ppm/TMS	100,4	95,7
J ¹³ C(1)H(1)Hz	163 ± 1	176 ± 1

Ces résultats sont en accord avec ceux qui ont été publiés récemment dans la littérature et qui concernent les monomères correspondants (2-4).

Les échantillons de TAC résultent de deux préparations par culture bactérienne d'Acetobacter xylinum. La première synthèse conduite à l'aide de <u>D</u>-glucose normal a fourni une cellulose qui, acétylée, donne le spectre de RMN de la figure <u>la</u>. Le spectre de la figure <u>lb</u> résulte de l'observation d'un échantillon de cellulose, acétylé comme le précédent, mais obtenu par synthèse avec du <u>D</u>-glucose-1- ¹³C (enrichi à 86 %). Il montre que la position 1 des résidus <u>D</u>-glucopyranoses de la cellulose ainsi produite bénéficie d'un enrichissement d'environ 20 % en carbone-13 à rapprocher des résultats de Minor et coll. (5) obtenus dans les mêmes conditions avec Acetobacter xylinum mais à partir du <u>D</u>-glucose-1- ¹⁴C (cet enrichissement est estimé par rapport au D-glucose-1- ¹³C).

La figure $\underline{1b}$ fait également apparaître un point intéressant, qui met en valeur les possibilités de la méthode. On remarque en effet la présence d'un doublet centré à δ = 89 ppm possédant un écart très voisin de celui mesuré sur les spectres du TAA (figure $\underline{1c}$) mais situé à champ nettement plus fort. On peut logiquement penser à la présence, inattendue, de liaisons ($l\rightarrow x$) (x différent de 4). Nous nous préoccupons actuellement d'éclaircir ce point et d'expliquer la présence de ces signaux. Insistons sur le fait que s'il s'agit de résidus \underline{p} -glucose. une analyse de la cellulose obtenue par voie dégradative, n'auraît pu en aucun cas déceler cette anoma lie mise en évidence par le spectre de RMN de carbone-13.

Les spectres de RMN 13 C ont été réalisés dans $\mathrm{CDC1}_3$ avec le TMS pour référence interne.

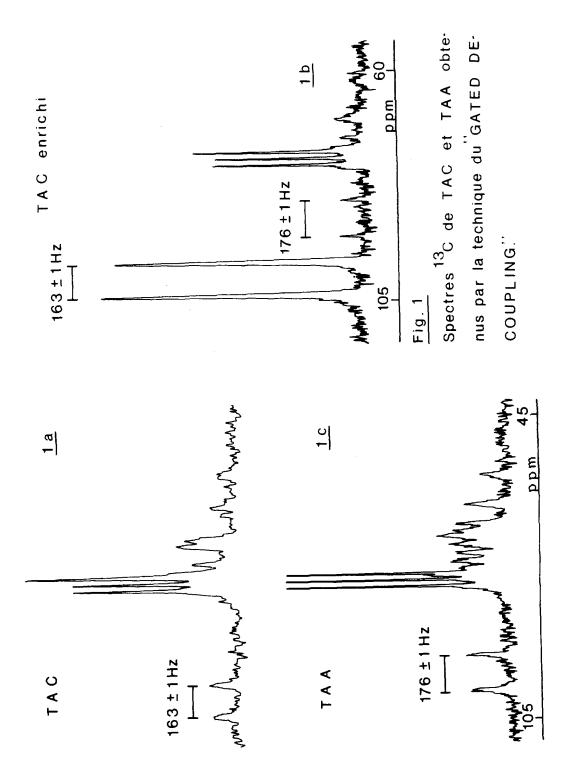
- Dans un tube de 12 mm, 2,5 ml de solvant pour :
 - . 70 mg de TAC enrichi au 13C
 - . 250 mg de TAC non enrichi
 - . 220 mg de TAA non enrichi.

Une nuit d'accumulation en "gated decoupling" avec appareil VARIAN XL 100, lock ¹⁹F, analyse par transformées de Fourier.

- Pour les tri-0-acétyl 2,3,5 α et β -D-xylopyranosides de méthyle. Le mélange anomérique a une concentration globale en poids de 40 %. Le spectre est obtenu en une heure avec un appareil Bruker WP60 par analyse en transformée de Fourier, lock deutérium et tube de 10 mm.

La cellulose bactérienne (70 mg) a été acétylée pendant 3 jours avec un mélange : 20 ml d'acide acétique, 20 ml anhydride acétique, 0,3 ml d'acide perchlorique, à température ambiante, puis isolée par précipitation de façon classique.

Le triacétate d'amylose a été préparé à partir d'amylose de pomme de terre par la méthode de Pacsu (6).


Remerciements

Nous remercions Monsieur le Professeur D. Gagnaire pour ses suggestions relatives à ce travail, Monsieur R. Nardin pour la réalisation des spectres de TAC et TAA, Monsieur E. Roche, pour un

échantillon de TAA.

Références

- (1) Ph. J.A. VOTTERO thèse Grenoble 1970.
- (2) H. BOCK, I. LUNDT et C. PEDERSEN Tetrahedron Letters 1037 (1973)
- (3) A.S. PERLIN et B. CASU Tetrahedron Letters 2921 (1969)
- (4) a K. BOCK et C. PEDERSEN J. Chem. Soc. (Perkin II) 293 (1974) b A.S. PERLIN, NATSUKO CYR, R.G.S. RITCHIE et A. PARFONDRY Carbohyd. Res 37 C₁-C₄ (1974)
- (5) F.W. MINOR, G.A. GREATHOUSE, H.G. SHIRK, A.M. SCHWARTZ et M. HARRIS J. A mer. Chem. Soc. 76 1658 (1954)
- (6) J.W. MULLEN et E. PACSU Ind. Eng. Chem. 34 1209 (1942).

